Taming Data
19 January 2017
Larry Hardesty, MIT News Office

The age of big data has seen a host of new techniques for analyzing large data sets. But before any of those techniques can be applied, the target data has to be aggregated, organized, and cleaned up.

That turns out to be a shockingly time-consuming task. In a 2016 survey, 80 data scientists told the company CrowdFlower that, on average, they spent 80 percent of their time collecting and organizing data and only 20 percent analyzing it.

An international team of computer scientists hopes to change that, with a new system called Data Civilizer, which automatically finds connections among many different data tables and allows users to perform database-style queries across all of them. The results of the queries can then be saved as new, orderly data sets that may draw information from dozens or even thousands of different tables.

“Modern organizations have many thousands of data sets spread across files, spreadsheets, databases, data lakes, and other software systems,” says Sam Madden, an MIT professor of electrical engineering and computer science and faculty director of MIT’s bigdata@CSAIL initiative. “Civilizer helps analysts in these organizations quickly find data sets that contain information that is relevant to them and, more importantly, combine related data sets together to create new, unified data sets that consolidate data of interest for some analysis.”

The researchers presented their system last week at the Conference on Innovative Data Systems Research. The lead authors on the paper are Dong Deng and Raul Castro Fernandez, both postdocs at MIT’s Computer Science and Artificial Intelligence Laboratory; Madden is one of the senior authors. They’re joined by six other researchers from Technical University of Berlin, Nanyang Technological University, the University of Waterloo, and the Qatar Computing Research Institute. Although he’s not a co-author, MIT adjunct professor of electrical engineering and computer science Michael Stonebraker, who in 2014 won the Turing Award — the highest honor in computer science — contributed to the work as well.

Full story here: http://news.mit.edu/2017/system-finds-links-related-data-digital-files-q...